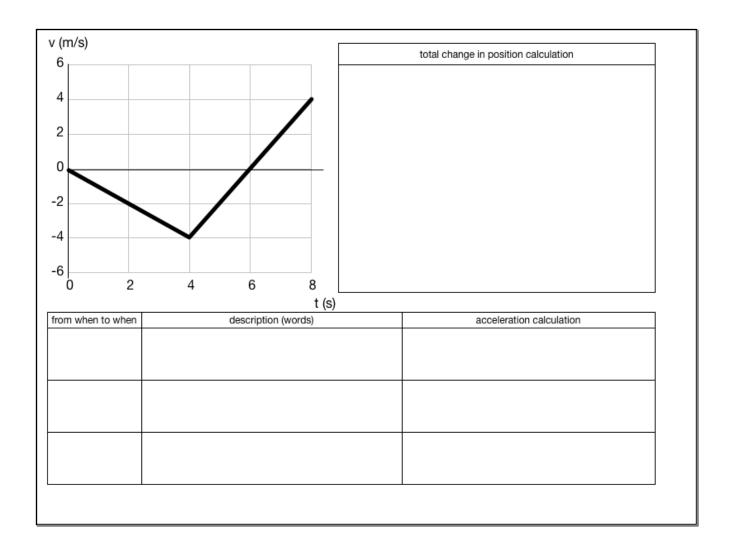
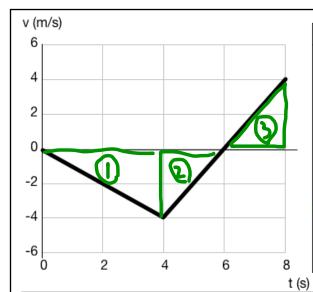

Can we get everything we need from the velocity graph?

Slope is acceleration.

 $a = \frac{rise}{run}$ (If it's a downslope, the slope is negative.)




Area is change in position.

Between graph and 0-line.

Break it up into triangles and rectangles to make the calculation easier.

Area below the 0-line counts as negative (going left).

total change in position calculation

Area
$$2 = 1/2bh = (1/2)(2 s)(-4 m/s) = -4 m$$

Area
$$3 = 1/2bh = (1/2)(2 s)(4 m/s) = 4 m$$

$$= -8 \text{ m}$$

from when to when	description (words)	acceleration calculation
0 to 4 s	Speed up, moving left.	rise: $-\frac{4 \text{ m/s}}{4 \text{ s}} = -1 \text{ m/s/s}$
4 to 6 s	Slow down - moving left.	rise: $\frac{4 \text{ m/s}}{\text{run: } 2 \text{ s}} = 2 \text{ m/s/s}$
6 to 8 s	Speed up, moving right.	rise: $\frac{4 \text{ m/s}}{\text{run: } 2 \text{ s}} = 2 \text{ m/s/s}$